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In this study, the Fourier transform, wavelet transform and turbulence "lter methods have been
applied to coaxial jet #ows for various downstream positions in the inner and outer mixing
regions. The data were obtained from cross-wire measurements, so axial and radial velocity
components were acquired. Attention is focused on the characteristics of these signals in the
initial region of the jet-#ow "eld. The e!ects of some basic mechanisms of the vorticity
dynamics on the velocity time histories, and on di!erent statistical and spectral quantities,
are studied. ( 2000 Academic Press
1. INTRODUCTION

The #ow produced by coaxial jets is of great interest from the perspective of aeronautical
and industrial applications. Much of the aeronautical interest is related to noise reduction
achievable by coaxial jets in comparison to simple jets. The e!ect of noise reduction by
addition of a surrounding coaxial stream to a single jet has been observed (Williams et al.
1969). It has been suggested that the aerodynamic noise generated by simple and coaxial jets
is related to the dynamics of large-scale vortical structures forming from the instability of
the shear layers (Hussain 1986; Roshko 1976). The prediction of the dynamics of these
structures by external forcing is necessary in order to have a better mixing between streams.
This could be useful in industrial applications; e.g., in the design of new industrial burners
for e$cient combustion and minimum pollution. Large vortical structures play a role
mainly in the initial region, where the azimuthal disturbances, if not intentionally introduc-
ed, do not have su$cient time to grow and in#uence the dynamics of the jets. Ko & Kwan
(1976) studied coaxial jets by using hot-wire anemometry. They carried out measurements
at di!erent mean-velocity ratios and observed the similarity of the mean-velocity and
turbulent-intensity pro"les within the two mixing regions inside the initial merging zone,
and within the mixing region inside the fully merged zone. They also showed similarities
between coaxial and single jets. Petagna et al. (1994) have investigated the turbulent
near-"eld of a coaxial jet using the wavelet transform. They showed that shear layer
structures growing in size in the downstream direction dominate the "eld, even if their
continuously varying shape and lack of regularity in presentation prevent their clear
identi"cation from Fourier spectral analysis, at least in the "rst stages of their development.
Conversely, the wavelet-based procedure reveals clearly that only a limited range of scales
0889}9746/00/040359#15 $35.00/0 ( 2000 Academic Press
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contributes to the Reynolds stress. Remarkably, they found that, even in the initial region of
the outer jet core, where the Reynolds stresses are very small and the cross-spectra show no
sign of prevailing frequencies, the contribution of the scales to the Reynolds stresses will
become dominant at the end of the core. Onorato et al. (1996) studied velocity signals
obtained from direct numerical simulations of an axisymmetric coaxial jet con"guration,
with inner-to-outer diameter and velocity ratios D

i
/D

0
"0)71 and;

i
/;

o
"1)41, respectively.

In their study, they focused on the characteristics of these signals in the initial region of the
#ow "eld, and analyzed e!ects of the basic mechanism of velocity dynamics on the velocity
time-histories and on di!erent statistical and spectral quantities. In particular, they used
a wavelet cross-correlation analysis to associate the roll-up, the passage and the pairing of
vortical structures with average, spectral and instantaneous contributions to the Reynolds
stresses.

In this study, "rstly, the Fourier and wavelet analyses of coaxial jet #ows are carried out.
Then, the #ow characteristics in the initial region of coaxial jet #ows are investigated by
using the turbulence "lter method (Kodal 1993). The turbulence "lter method is applied to
the data in order to decompose the velocity #uctuations into organized and nonorganized
parts. The results of the turbulence "lter are discussed, in the time, Fourier and wavelet
domains.

2. EXPERIMENT AND DATA

It is well known that shear layers rapidly become unstable, and roll-up in discrete vortices,
which grow, merge, and "nally become turbulent. This evolution has been widely studied in
the past for axisymmetric single jets (Hussain & Zaman 1985), but less e!ort has been
devoted to study the e!ect of presence of an annular jet on the near-"eld dynamics of
vortical structures. Characterization of such a coaxial jet #ow-"eld is quite complex, due to
the high number of parameters involved in a given con"guration.

A typical #ow-"eld of a coaxial jet con"guration can be seen in Figure 1 for the condition
of higher outer jet velocity. The measurements considered in this study were carried out in
a research for the characterization of coaxial jets, at the Department of Aeronautical
Figure 1. Flow "eld of a coaxial jet con"guration.
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Engineering, University of Pisa, Italy. The experimental facility and the instrumentation
were described in detail by Buresti et al. (1994).

In axisymmetric #ows, the boundary conditions have axial symmetry, mean values
connected with the #ow will be distributed with the same symmetry, and the #ow is most
conveniently described in cylindrical polar coordinates. The axis of symmetry is the
x-direction, the radial coordinate is y, and the azimuthal coordinate is /. The respective
components of the mean velocity are ;, <, = (="0 in axisymmetric #ow), and
the components of the instantaneous velocity #uctuations are u, v, w. In order to get
a physical insight for the rolling-up and merging process of coaxial jets, it is necessary to
consider only the azimuthal vorticity (Tso & Hussain 1989). Measuring the radial and axial
velocities will allow the determination of the azimuthal vorticity. Therefore, many re-
searchers have considered only the radial and axial components of the velocities in
turbulent axisymmetric jet #ows (Salvetti et al. 1996; Tso & Hussain 1989; Grinstein et al.
1995; Buresti et al. 1994). In addition, Townsend (1956) notes that the radial and azimuthal
components of turbulence are nearly equal in a coaxial jet which infers that there is
a similarity in the turbulence characteristics in these two directions.

In this study, the data were obtained by hot-wire anemometry using X-wire probes,
therefore only the axial (u) and radial (v) velocity components have been considered. The
signals from the probe were acquired at a sampling rate of 6000 Hz with a 12-bit A/D
converter. In each measurement, 32 768 samples were acquired corresponding to signal
duration of 5)46 s. The velocity signals were obtained at two radial distances (y/D

i
"0)4

and 1) and four axial distances (x/D
i
"1, 2, 3 and 4). The thickness of the inner duct wall

was negligibly small. In the measurements, the inner velocity, velocity ratio, inner duct
diameter, diameter ratio and Reynolds number were ;

i
"1)2 m/s, ;

i
/;

O
"0)3,

D
i
"77)5 mm, D

i
/D

O
"0)5 and Re";

O
D

O
/l"4)2]104, respectively.

3. FOURIER ANALYSIS

The Fourier analysis has been widely used to characterize transitional #ows in which
interacting modes are dominant (Petagna et al. 1994; Onorato et al. 1996; Hussain
& Zaman 1985; Davies et al. 1962; Anselmet et al. 1994). Alternatively, in order to describe
the evolution of a #uctuating velocity component, u, and how its values at di!erent times are

related, one can also use auto-correlation function, R
uu

(q)"u (t)u (t#q), which is related to
the Fourier power spectrum. If the two component u(t) and l(t) of a velocity "eld are
available, the Fourier cross-spectra can be de"ned as the Fourier transform of u times the
complex conjugate of the Fourier transform of l. Using two velocity components,

the cross-correlation function, R
uv

(q)"u(t)l (t#q), can also be calculated.
The cross-spectrum P

uv
(u) is complex, so it can be expressed in terms of real and

imaginary parts:

P
uv

(u)"CoP
uv

(u)!i QuadP
uv

(u). (1)

The Fourier cospectrum CoP
uv

(u) is the real part of the cross-spectrum and quad-spectrum
QuadP

uv
(u) is the imaginary part of the cross-spectrum. The phase angle h

uv
(u) between

two signals is de"ned as

h
uv

(u)"tan~1(QuadP
uv

(u)/CoP
uv

(u)). (2)

These quantities are very useful because, besides giving information on the correlation
between u and v in the Fourier and physical spaces, they are directly related to the Reynolds

stress, !ouv. For example, if u(t) and v (t) are in quadrature (i.e. their phase di!erence



Figure 2. Power spectra of the u (solid line) and v (dotted line) velocities at four axial distances (y/D
i
"0)4).
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is 903), then the cospectrum CoP
uv

(u) and the contribution to Reynolds stress becomes zero.
The nondimensional coherence function, C, is de"ned as

C"P
uv

(u)/[P
u
(u)P

v
(u)]1@2"C

r
#iC

i
, (3)

where C
r
and C

i
are the real imaginary parts of C, respectively (Roberts 1973).

The spectra of both axial (u) and radial (v) velocity components were considered at each
measurement point. The analysis is based on the average of four spectra, obtained from
portions of the hot-wire signals composed of 213 samples, without overlapping.
Figure 2 shows the linear power spectra of u and v velocity data for various downstream
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distances at y/D
i
"0)4. The linear power spectra give details on the prevailing frequencies.

At the "rst point in the inner mixing region, (y/D
i
"0)4, x/D

i
"1), a peak probably related

to the passage of the large-scale structures at a dominant frequency is discernible. The u and
v velocity power spectra are very similar. They have peaks at the frequencies of 32, 84 and
115 Hz. The peak at 84 Hz is the highest, so the most energetic motion can be expected at
this frequency. At the second point (y/D

i
"0)4, x/D

i
"2), the power spectra of u and

v velocities show a few peaks at di!erent frequencies. The u spectrum shows dominant
peaks at frequencies of 2, 24, 30, 32 and 38 Hz, and the v spectrum shows two dominant
peaks at 32 and 84 Hz. At this point, the motion at 84 Hz is less discernible in the axial
direction but it is still e!ective in the radial direction. The motion at 32 Hz becomes more
dominant in the axial and radial directions. At the third point (y/D

i
"0)4, x/D

i
"3), the

u spectrum shows dominant peaks 26, 32 and 36 Hz, and the v spectrum shows two
dominant peaks at 17 and 32 Hz. At the last downstream point (y/D

i
"0)4, x/D

i
"4), the

dominant peaks can be seen at 17, 22 and 28 Hz for the u component, and at 22 Hz for the
v component. As it can be seen clearly from Figure 2, the peaks tend to shift to lower
frequencies in the downstream direction. This leads to the conclusion that the dimension of
the vortical structures increases along the jet length. This result was also pointed out for
coaxial jet by Petagna et al. (1994), who showed that shear-layer structures grow in size in
the downstream direction.

The Fourier cospectra, quad-spectra and the coherence function at the "rst downstream
station are presented in Figure 3 for the inner and outer mixing regions. The Fourier
cospectrum of the "rst point shows a negative peak at a frequency of 84 Hz, which is the
prevailing frequency in the u and v spectra at this location. The u and v velocities are
correlated at this frequency. The quad-spectrum also shows a negative peak at 84 Hz, and
this peak is approximately four times larger in magnitude than that of the cospectrum. The
di!erence in magnitude of both spectra at 84 Hz corresponds to a large phase lag which can
be determined as 803 by using equation (2). For the outer mixing region, the cospectra of the
#ow show opposite sign to those of the inner-mixing region. This is related to two vortex
sheets of opposite sign, which originate from the inner and outer duct walls. It can be
seen from the coherence plots that the real part of the coherence in the inner mixing
region is found to be nearly zero over the whole frequency range considered. For the
outer mixing region, the real part of the coherence is signi"cantly nonzero. So the u and
v velocity components are more correlated in the outer mixing region than in the inner
mixing region.

It is not easy to determine the contribution of the mean #ow to the Reynolds stress from
the Fourier cross-spectral analysis. In the next section, the wavelet analysis will be present-
ed; it gives a clearer representation than the Fourier analysis.

4. WAVELET ANALYSIS

4.1. MATHEMATICAL FORMULATION

The wavelet transform is a new processing tool that may help in extracting information
from broad-band turbulent data allowing signal features to be identi"ed locally, whereas the
Fourier analysis requires regular repetition of events. A wavelet can be any real or
complex-valued function, t3¸2 (where ¸2 denotes the Hilbert space of measure) that
satis"es the wavelet admissibility condition

Ct"P
=

~=

DtK (u) D2 DuD~1du(R, (4)



Figure 3. (a, c) Fourier co-spectra (solid lines), quad-spectra (dotted lines) and (b, d) coherence [C
r
(u) (solid

lines), C
i
(u) (dotted lines)] at x/D

i
"1 and two radial distances.
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where Ct is the admissibility constant, and t) (u) is the Fourier transform of t (t), i.e.,

t) (u)"P
=

~=

t (t) e!iut dt. (5)

Since t(t)3¸2, condition (4) implies that t(t) must have zero mean, and we have

P
=

~=

t(t) dt"0 or t) (u"0)"0. (6)

The function t(t) is called the mother wavelet and can be used to generate a wavelet family
by continuous translation and dilation:

t
aq"p (a)tA

t!q
a B , (7)

where a3R` is the scale dilation parameter, q3R is the translation parameter correspond-
ing to the position of the wavelet in the physical space, and p (a) is a weighting function that
can be chosen di!erently for di!erent purposes. In the literature, the function p (a) has been
taken as a~1@2, a~1 and a0 (Farge 1992; Lewalle 1994; Arneodo et al. 1988). In the present
work p(a) was chosen as a~1@2, so that the ¸2*the norm of the wavelet*is independent of
a and all wavelets have the same energy at each scale. The continuous wavelet transform of
a function f (t) is de"ned as the ¸2 inner product between f and the wavelet t

aq,

=(a, q)"P
=

~=

f (t)t*
aqdt, (8)

where t*
aq is the complex conjugate of t

aq . It should be pointed out that, for the continuous
wavelet transform, the wavelets are not orthogonal and the transform contains redundant
information. Nevertheless, owing to the admissibility condition (4), the signal f (t) can be
recovered from its wavelet coe$cients,

f (t)"(1/Ct) P
=

~=
P

=

0

=(a, q)t
aq dadq/a2. (9)

Furthermore, Parseval's equality holds,

E f E2"P
=

~=

D f (t) D2dt"(1/Ct) P
=

~=
P

=

0

D=(a, q) D2dadq/a2. (10)

Using the convolution thorem, it can be shown that the wavelet transform coe$cients,
equation (8), can also be calculated, for p(a)"a~1@2, in the following way:

=(a, q)"(1/2n)P
=

~=

fK (u)[tK
a
(u)]* e*uqdu, (11)

where t)
a
(u)"a1@2tK (au) is the Fourier transform of a~1@2t(t/a). Thus, at each scale a,

=(a, q) can be interpreted as a "ltered version of f (t), band-pass "ltered by t)
a
(u). Equation

(11) is very useful for the numerical computation of the wavelet coe$cients.
In order to compare wavelet and Fourier results, it is useful to de"ne the scale number

s"1/a, which plays the same role as the frequency in Fourier analysis. In terms of this new
variable s, Parseval's equality changes to

P
=

~=

D f (t) D2dt"(1/Ct) P
=

~=
P

=

0

D=(s, q) D2ds dq, (12)
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and the wavelet power spectrum can be de"ned as

P
W

(s)"(1/Ct) P
=

~=

D=(s, q) D2dq. (13)

To relate the Fourier power spectrum P
F
(u)"(1/2n) D fK (u) D2 with the wavelet power

spectrum, by using equations (11) and (13), the following relation is obtained:

P
W

(s)"(1/Ct) P
=

~=

Dt)
s
(u) D2P

F
(u) du, (14)

where now t)
s
(u)"s~1@2tK (u/s) is the Fourier transform of t

s
(t)"s1@2t(st). Thus, P

W
(s) is

an average of the Fourier power spectrum P
F
(u), weighted by the power spectrum of the

wavelet "lter. Therefore, the wavelet analysis gives a smoother and clearer representation of
the power spectrum than the Fourier analysis, and this feature can be used advantageously
to determine the dominating frequencies in the spectra of the experimental turbulent
velocity signals. However, it can be shown that for the wavelet spectra to actually reproduce
the high wave number behavior of asymptotically decaying Fourier spectra, the analyzing
wavelet must ful"ll appropriate conditions, and, in particular, it must have enough vanish-
ing moments.

The commonly used Morlet wavelet is a complex wavelet, which is used in this study; it is
a sinusoidal wave multiplied by a Gaussian function,

t (t)"eiu
0
t e!t2/2 . (15)

In Fourier space, the Morlet wavelet is given by

t) (u)"(2n)~1@2 e!(u!u
0
)2/2. (16)

The Morlet wavelet is only marginally admissible, because it has zero mean only if a small
correction term is subtracted. In practice, if we take u

0
"6, the correction term becomes

unnecessary because it is of the same of a typical computer round-o! error. For the Morlet
wavelet, the relation between frequencies and scales is u"u

0
/(2na).

The advantage of a complex wavelet, as we shall see in the cross-spectral analysis is that,
the instantaneous phase of a signal or the di!erence of the phase between two signals can be
de"ned. For this reason, all the applications of wavelet transform procedures to the analysis
of velocity signals described in the present paper make use of the Morlet wavelet. Farge
(1992) provides a good introduction to wavelet analysis as it applies to turbulence data.
Mathematical details are covered in a number of recent books [e.g., Daubeches (1992)],
while further information on recent applications may be found in Petagna et al. (1994),
Lewalle (1994), and Hudgins et al. (1993).

4.2. WAVELET SPECTRAL ANALYSIS

The wavelet spectra and cross-spectra were obtained in order to "nd the dominant
frequencies for the energy of #uctuations and the Reynolds stress production. In Figure 4,
the wavelet energy scalogram [equation (8)] can be seen for the u velocity component for
the "rst and third measurement points in the inner mixing region. This "gure permits the
identi"cation of the intermittency of the events. As it can be seen from Figure 4(a), two
dominant frequencies exist at 28 and 84 Hz for the "rst point, with the event at 28 Hz being
more intermittent. In the Fourier analysis it is easy to obtain the frequency of the periodic
motions, however the wavelet analysis gives information in time as well as in frequency. The
u component wavelet scalogram is shown in Figure 4(b) for the position y/D

i
"0)4,

x/D
i
"3. From this "gure, it is observed that there are some nearly periodic motions



Figure 4. Wavelet scalogram of the u velocity component (y/D
i
"0)4).



Figure 5. Wavelet power spectra of the total u and v velocities for four axial distances (y/D
i
"0)4).

ANALYSIS ON COAXIAL JET FLOWS 367



Figure 6. (a) Wavelet co-scalogram (b) wavelet quad-scalogram (y/D
i
"0)4, x/D

i
"1).
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concentrated around the frequencies of 14 and 28 Hz. The intermittency of these motions
with time can also be observed.

The frequencies of these nearly periodic motions are clearer in Figure 5, which shows the
wavelet power spectra of the u and v velocities in the inner mixing region. In Figure 5, the
plot for the "rst measurement point (x/D

i
"1) shows two peaks at the frequencies of 28 and

84 Hz in both u and v wavelet power spectra. These peaks mean that there are nearly
periodic motions at these frequencies. These motions are related to the vortex roll-up
process. The frequency of 84 Hz corresponds to the vortex sheet rolling-up, and its
subharmonic 28 Hz corresponds to the merging of the vortices. At the second downstream
distance (x/D

i
"2), the peak at 28 Hz reaches a maximum value; this location is the "rst

merging station of the vortices. The peak at 84 Hz at the "rst measurement point disap-
pears. At the third point (x/D

i
"3), two di!erent dominant frequency can be seen at 14 and

28 Hz. The peak at 14 Hz attains its maximum value at the last measurement point
(x/D

i
"4), the second merging station.

4.3. WAVELET CROSS-SPECTRAL ANALYSIS

Let =
u
(a, q) and =

v
(a, q) be, respectively, the continuous wavelet transforms of two time

signals u (t) and v(t). The wavelet cross-scalogram can be de"ned as follows:

=
uv

(a, q)"=*
u
(a, q)=

v
(a, q). (17)
Figure 7. Wavelet co-spectra (solid line with circles), quad-spectra (solid line) and phase lag (dashed line) for
x/D

i
"1 at two radial distances: (a) y/D

i
"0)4; (b) y/D

i
"1.
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If the analysis is carried out by means of a complex wavelet, as the Morlet wavelet used
herein (Onorato et al. 1996), the cross-scalogram is also complex and can be written in terms
of its real and imaginary parts, the coscalogram Co=

uv
and the quad-scalogram Quad=

uv
,

respectively, i.e.,

=
uv

(a, q)"Co=
uv

(a, q)!iQuad=
uv

(a, q). (18)

The instantaneous angle of phase between u(t) and v(t) at the scale number a can also be
de"ned as

h
uv

(a, q)"tan~1(Quad=
uv

(a, q)/Co=
uv

(a, q) ). (19)

Since u (t) and v (t) are the two components of the velocity #uctuations in a turbulent #ow,
this formulation permits to detect time intervals and scales giving signi"cant contributions
to the Reynolds stress.
Figure 8. (a) Total u velocity data (dotted line) and "ltered organized motion (solid line); (b) power spectra of the
total data, "ltered organized motion and "ltered turbulent motion (dashed line); y/D

i
"0)4, x/D

i
"1.



Figure 9. Wavelet scalograms for u velocity component: (a) "ltered organized motion; (b) "ltered turbulent
motion; (y/D

i
"0)4, x/D

i
"1).



Figure 10. Wavelet power spectra of total velocity, "ltered organized and "ltered turbulent motions: (a) for the
u velocity component (x/D

i
"1, y/D

i
"0)4); (b) for the v velocity component (x/D

i
"1, y/D

i
"1); (c) for the

v velocity component (x/D
i
"2, y/D

i
"1): - - -, total; ** , organized; }d }, turbulent.
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The wavelet coscalogram and quad-scalogram are shown for the "rst measurement point
in the inner mixing region in Figure 6. From the "gure, we see concentrated spots around 28
and 84 Hz in both scalograms. The darkness of these spots indicates that these spots
correspond to negative peaks. This can be seen clearly from Figure 7. In this "gure, the
wavelet cospectra, quad-spectra and phase lags of the u and v velocity components are
shown for the inner and outer mixing regions at x/D

i
"1. For the inner mixing region, both

spectrum curves show negative peaks at 84 Hz, however the peak of the quad-spectrum at
this frequency is greater than that of the cospectrum. This implies that, the u and v compo-
nents at this frequency have high phase lag (about 803), and thus give a small contribution

to uv, i.e., to the Reynolds stress. It is interesting to point out that the cospectrum curve
indicates a relatively larger negative peak at 28 Hz with respect to the peak at 84 Hz.
Therefore, u and v velocities are more correlated and the phase di!erence between them is
smaller at 28 Hz. The phase angle is about 603 at 28 Hz.
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In Figure 7(b), the cospectra, quad-spectra and phase lags between u and v velocity
components are presented for the outer mixing region. The cospectrum shows the opposite
sign with the cospectra presented in the inner mixing region in Figure 7(a). This is related to
two vortex sheets of opposite sign, which are originating from inner and outer duct walls as
mentioned in the Fourier cross-spectra analysis. The highest correlation peak is seen at
32 Hz and a smaller peak at 84 Hz. It is interesting to point out that these peaks are at the
same frequencies of the peaks of the inner mixing region. The quad-spectra have negative
peaks at the same frequencies.

5. APPLICATION OF THE TURBULENCE FILTER

The turbulence "lter is a relatively new decomposition technique. Brereton & Kodal (1992,
1994) applied the turbulence "lter method to 1-D and 2-D turbulent #ows and claimed that
this method is more general than the phase average in its applicability and that it makes
more e$cient use of available data. In this section, we used the turbulence "lter technique in
order to decompose the near-"eld coaxial jet #ow data into its organized and background
turbulent components.

In Figure 8, the total u velocity data, "ltered organized and turbulent motions in time and
frequency domains can be seen for the "rst measurement point in the inner mixing region.
The power spectrum of the "ltered organized motion has a peak at the frequency of 84 Hz,
associated with the vortex-sheet roll-up process. The wavelet transform can be used to
analyze the "ltered organized and turbulent motions in time}frequency plane. If a turbulent
"eld is mainly some kind of noise, its energy density should be randomly distributed in both
space and scale, without presenting any characteristic pattern in phase space (Farge 1992).
The wavelet scalograms of the "ltered organized and turbulent motions of the u velocity are
shown in Figure 9 for the "rst measurement point in the inner mixing region. The wavelet
map of the "ltered organized motion shows dominant frequency at 84 Hz with an intermit-
tent character. In the turbulence map, the energy density is randomly distributed in both
time and frequency, as expected.

The wavelet power spectra of the total data, organized and turbulent motions are
presented in Figure 10(a) for this point. The power spectrum of the "ltered organized
motion shows dominant frequencies at 28 and 84 Hz which are the roll-up and merging
frequencies of the vortices. In Figure 10b, c, the wavelet power spectra of the "ltered
organized and turbulent motions of the v velocity are presented for the "rst two down-
stream distances in the outer mixing region. At the "rst point, the power spectrum of the
"ltered organized motion has two dominant peaks at 32 and 84 Hz. The peak at 84 Hz is
higher than the one at 32 Hz, corresponding to relatively more energetic motion. The
spectrum of the turbulent component has almost zero energy at these frequencies. At the
second point, which iss the "rst merging location, the spectrum of the "ltered organized
motion shows a dominant peak at 32 Hz and the "ltered turbulent component has almost
zero energy at this frequency.

6. CONCLUSIONS

The #ow-"eld structures of the coaxial jet #ows were analyzed with di!erent decomposition
techniques. Firstly, the Fourier analysis of the initial region of the coaxial jet #ow has been
carried out. The roll-up and merging frequencies of the vortices are presented in the Fourier
spectral and cross-spectral analysis. The analysis using the wavelet transform has allowed
examining the intermittency of the #ow and showed clearer representation. The rolling-up
and merging frequencies are seen in the wavelet presentation better than the Fourier
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analysis. Finally, the turbulence "lter method is used to decompose the #ow into organized
and nonorganized components. The wavelet maps of the "ltered organized and turbulent
motions have been demonstrated. The wavelet map of the "ltered organized motion showed
a dominant frequency with an intermittent behavior, and the wavelet map of the "ltered
turbulence showed randomly distributed character in time and frequency domain.
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